Functional Equation Analogous to the 2-Dimensional Wave Equation

Teerapol Sukhonwimolmal, Pattanee Udomkavanich and Paisan Nakmahachalasint*

Abstract: In this paper, we obtained the general solution for the functional equation

$$
\left(\Delta_{x, h_{1}}^{2} f\right)(x, y, t)+\left(\Delta_{y, h_{2}}^{2} f\right)(x, y, t)=\left(\Delta_{t, h_{3}}^{2} f\right)(x, y, t)
$$

analogous to 2 -dimensional wave equation.

Keywords: functional equation, wave equation, difference equation 2000 Mathematics Subject Classification: 39A10

1 Introduction

In 1988, S. Haruki [2] investigated the functional equation

$$
\begin{equation*}
\frac{f(x+t, y)-2 f(x, y)+f(x-t, y)}{t^{2}}=\frac{f(x, y+s)-2 f(x, y)+f(x, y-s)}{s^{2}} \tag{1}
\end{equation*}
$$

analogous to the one-dimensional wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial y^{2}}
$$

[^0]and obtained the general solution
\[

$$
\begin{aligned}
f(x, y)= & c_{0}+c_{1}\left(x^{2}+y^{2}\right)+c_{2}\left(x^{3}+3 x y^{2}\right)+c_{3}\left(y^{3}+3 x^{2} y\right)+c_{4}\left(x^{3} y+x y^{3}\right) \\
& +A_{1}(x)+A_{2}(y)+B(x, y)
\end{aligned}
$$
\]

In this paper, we will find all functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ which satisfy the functional equation

$$
\begin{align*}
& \frac{f\left(x+h_{1}, y, t\right)-2 f(x, y, t)+f\left(x-h_{1}, y, t\right)}{h_{1}^{2}}+\frac{f\left(x, y+h_{2}, t\right)-2 f(x, y, t)+f\left(x, y-h_{2}, t\right)}{h_{2}^{2}} \\
& =\frac{f\left(x, y, t+h_{3}\right)-2 f(x, y, t)+f\left(x, y, t-h_{3}\right)}{h_{3}^{2}} \tag{2}
\end{align*}
$$

for all $x, y, t \in \mathbb{R}$ and $h_{1}, h_{2}, h_{3} \in \mathbb{R} \backslash\{0\}$. Note that Eq.(2) can be viwed as an analogue of the 2 -dimensional wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

2 Preliminaries

In order to better understand the functional equation (2) and to elucidate the analogue between differential equations and functional equations, we will define the difference operator Δ_{h} for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\Delta_{h} f(x)=\frac{f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)}{h}
$$

for all $x \in \mathbb{R}$ and $h \in \mathbb{R} \backslash\{0\}$.
For a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, we will define

$$
\begin{aligned}
\Delta_{x, h} f(x, y, t) & =\frac{f\left(x+\frac{h}{2}, y, t\right)-f\left(x-\frac{h}{2}, y, t\right)}{h} \\
\Delta_{y, h} f(x, y, t) & =\frac{f\left(x, y+\frac{h}{2}, t\right)-f\left(x, y-\frac{h}{2}, t\right)}{h} \\
\Delta_{t, h} f(x, y, t) & =\frac{f\left(x, y, t+\frac{h}{2}\right)-f\left(x, y, t-\frac{h}{2}\right)}{h} .
\end{aligned}
$$

An iterative of the operator Δ_{h} is simply defined by

$$
\Delta_{h}^{n}=\Delta_{h}\left(\Delta_{h}^{n-1}\right)
$$

It should be noted that

$$
\Delta_{h}^{2} f(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Now equation (1) and (2) can be written succinctly as

$$
\begin{align*}
\Delta_{x, t}^{2} f(x, y) & =\Delta_{y, s}^{2} f(x, y) \tag{3}\\
\text { and } \quad \Delta_{x, h_{1}}^{2} f(x, y, t)+\Delta_{y, h_{2}}^{2} f(x, y, t) & =\Delta_{t, h_{3}}^{2} f(x, y, t)
\end{align*}
$$

respectively.
Haruki [2] gave a remarkable lemma that will be fruitful to our work; that is, he solved the functional equation $\Delta_{y}^{2} \psi(x)=\varphi(x)$ which simply states that the second-order difference is independent of the span.

Lemma 2.1. (Haruki) Two functions $\psi, \varphi: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the equation

$$
\Delta_{y}^{2} \psi(x)=\varphi(x)
$$

for all $x \in \mathbb{R}$ and $y \in \mathbb{R} \backslash\{0\}$ if and only if there exists an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ such that

$$
\begin{aligned}
& \psi(x)=a_{1}+A(x)+a_{2} x^{2}+a_{3} x^{3}, \\
& \varphi(x)=2 a_{2}+6 a_{3} x .
\end{aligned}
$$

Please recall that an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ possesses the additive property,

$$
A(x+y)=A(x)+A(y)
$$

for all $x, y \in \mathbb{R}$.
Haruki applied Lemma 2.1 to the functional equation (3) and obtained the following result:

Theorem 2.2. (Haruki) A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies $\Delta_{x, t}^{2} f(x, y)=\Delta_{y, s}^{2} f(x, y)$ for all $x, y \in \mathbb{R}$ and $s, t \in \mathbb{R} \backslash\{0\}$ if and only if

$$
\begin{aligned}
f(x, y)= & a_{0}+a_{1}\left(x^{2}+y^{2}\right)+a_{2}\left(3 x^{2} y+y^{3}\right)+a_{3}\left(3 x y^{2}+x^{3}\right)+a_{4}\left(x^{3} y+x y^{3}\right) \\
& +A_{1}(x)+A_{2}(y)+B(x, y)
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ are constants, A_{1}, A_{2} are additive functions and B is a bi-additive function.

Please be reminded that a function $B: \mathbb{R}^{2} \rightarrow \mathbb{R}$ will be bi-additive when it is additive in each variable; that is,

$$
\begin{aligned}
& B\left(x_{1}+x_{2}, y\right)
\end{aligned}=B\left(x_{1}, y\right)+B\left(x_{2}, y\right), ~\left(x, y_{1}+y_{2}\right)=B\left(x, y_{1}\right)+B\left(x, y_{2}\right)
$$

for all $x, y \in \mathbb{R}$.
In addition, a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ will be called 3-additive if it is additive in each variable.

3 Main result

In order to solve the functional equation

$$
\Delta_{x, h_{1}}^{2} f(x, y, t)+\Delta_{y, h_{2}}^{2} f(x, y, t)=\Delta_{t, h_{3}}^{2} f(x, y, t)
$$

we will first state the following lemma.
Lemma 3.1. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be functions such that f is additive in the first variable. Then f and g will satisfy the following system of equations

$$
\begin{align*}
\Delta_{y, h_{1}}^{2} g(y, t) & =\Delta_{t, h_{2}}^{2} g(y, t) \\
x g(y, t)+\Delta_{y, h_{1}}^{2} f(x, y, t) & =\Delta_{t, h_{2}}^{2} f(x, y, t) \tag{5}
\end{align*}
$$

if and only if

$$
\begin{align*}
f(x, y, t)= & C_{0}(x)+\left(y^{2}+t^{2}\right) C_{1}(x)+\left(t^{3}+3 y^{2} t\right) C_{2}(x)+\left(y^{3}+3 y t^{2}\right) C_{3}(x) \\
& +\left(y t^{3}+y^{3} t\right) C_{4}(x)+b_{0} x t^{2}+A_{1}(x, t)+A_{2}(x, y)+A_{3}(x, y, t) \\
& +x t^{2} B_{1}(y)+x t^{3} B_{3}(y)-x y^{2} B_{2}(t)-x y^{3} B_{4}(t) \tag{6}\\
g(y, t)= & 2 b_{0}+2 B_{1}(y)+2 B_{2}(t)+6 t B_{3}(y)+6 y B_{4}(t) \tag{7}
\end{align*}
$$

where $B_{1}, B_{2}, B_{3}, B_{4}$ and $C_{1}, C_{2}, C_{3}, C_{4}$ are additive functions, A_{1}, A_{2} are biadditive, A_{3} is 3-additive and b_{0} is a constant.

Proof. By Theorem 2.2, the function g is given by

$$
\begin{align*}
g(y, t)= & b_{0}+b_{1}\left(y^{2}+t^{2}\right)+b_{2}\left(y^{3}+3 y t^{2}\right)+b_{3}\left(t^{3}+3 y^{2} t\right)+b_{4}\left(y^{3} t+y t^{3}\right) \\
& +B_{1}(y)+B_{2}(t)+B^{*}(y, t) \tag{8}
\end{align*}
$$

where $b_{0}, b_{1}, \ldots, b_{4}$ are constants, B_{1}, B_{2} are additive and B^{*} is bi-additive. From Eq.(5), we can see that $\Delta_{y, h_{1}}^{2} f(x, y, t)=\Delta_{t, h_{2}}^{2} f(x, y, t)-x g(y, t)$ which is independent of the span h_{1}. Thus, by Lemma 2.1, we have

$$
\begin{equation*}
f(x, y, t)=D_{0}(x, t)+D_{1}(x, y, t)+y^{2} D_{2}(x, t)+y^{3} D_{3}(x, t) \tag{9}
\end{equation*}
$$

where D_{1} is additive in the second variable. Substitute Eq.(8) and Eq.(9) back into Eq. (5),

$$
\begin{array}{r}
x\left(b_{0}+b_{1}\left(y^{2}+t^{2}\right)+b_{2}\left(y^{3}+3 y t^{2}\right)+b_{3}\left(t^{3}+3 y^{2} t\right)+b_{4}\left(y^{3} t+y t^{3}\right)\right. \\
\left.+B_{1}(y)+B_{2}(t)+B^{*}(y, t)\right)+2 D_{2}(x, t)+6 y D_{3}(x, t) \\
=\Delta_{t, h_{3}}^{2}\left(D_{0}(x, t)+D_{1}(x, y, t)+y^{2} D_{2}(x, t)+y^{3} D_{3}(x, t)\right) \tag{10}
\end{array}
$$

Observe that for arbitrary $r \in \mathbb{Q}$, substituting $r y$ for y in Eq.(10), we obtain a polynomial of variable r with all rational numbers being its roots. Hence all the coefficients of the polynomial (in terms of the variable r) must vanish, that is,

$$
\begin{align*}
b_{0} x+b_{1} x t^{2}+b_{3} x t^{3}+x B_{2}(t)+2 D_{2}(x, t) & =\Delta_{t, h_{2}}^{2} D_{0}(x, t), \tag{11}\\
3 b_{2} x y t^{2}+b_{4} x y t^{3}+x B_{1}(y)+x B^{*}(y, t)+6 y D_{3}(x, t) & =\Delta_{t, h_{2}}^{2} D_{1}(x, y, t), \tag{12}\\
b_{1} x y^{2}+3 b_{3} x y^{2} t & =\Delta_{t, h_{2}}^{2} y^{2} D_{2}(x, t), \tag{13}\\
b_{2} x y^{3}+b_{4} x y^{3} t & =\Delta_{t, h_{2}}^{2} y^{3} D_{3}(x, t) \tag{14}
\end{align*}
$$

From Eq.(13), using Lemma 2.1, we will have

$$
\begin{equation*}
D_{2}(x, t)=C_{1}(x)+E_{1}(x, t)+\frac{b_{1}}{2} x t^{2}+\frac{b_{3}}{2} x t^{3} \tag{15}
\end{equation*}
$$

where E_{1} is additive in the second variable. Substitute Eq.(15) into Eq.(11) to get

$$
\begin{equation*}
\Delta_{t, h_{2}}^{2} D_{0}(x, t)=b_{0} x+2 C_{1}(x)+x B_{2}(t)+2 E_{1}(x, t)+2 b_{1} x t^{2}+2 b_{3} x t^{3} . \tag{16}
\end{equation*}
$$

By Lemma 2.1, the right-hand side of (16) must be a polynomial of degree 1 in the variable t. Therefore, $b_{1}=0=b_{3}$ and $x B_{2}(t)+2 E_{1}(x, t)=t C_{2}(x)$ for some $C_{2}: \mathbb{R} \rightarrow \mathbb{R}$. Moreover, D_{0} must be of the form,

$$
\begin{equation*}
D_{0}(x, t)=C_{0}(x)+A_{1}(x, t)+\frac{b_{0} x+2 C_{1}(x)}{2} t^{2}+\frac{C_{2}(x)}{6} t^{3} \tag{17}
\end{equation*}
$$

where A_{1} is additive in the second variable. Since $b_{1}=0=b_{3}$, Eq.(15) becomes

$$
\begin{equation*}
D_{2}(x, t)=C_{1}(x)+E_{1}(x, t)=C_{1}(x)+\frac{t C_{2}(x)-x B_{2}(t)}{2} . \tag{18}
\end{equation*}
$$

Similarly, from Eq.(14) and Lemma 2.1, we get

$$
\begin{equation*}
D_{3}(x, t)=C_{3}(x)+E_{2}(x, t)+\frac{b_{2}}{2} x t^{2}+\frac{b_{4}}{6} x t^{3} \tag{19}
\end{equation*}
$$

with E_{1} additive in the second variable. By Eq.(12) and (19), we obtain
$\Delta_{t, h_{2}}^{2} D_{1}(x, y, t)=x B_{1}(y)+6 y C_{3}(x)+x B^{*}(y, t)+6 y E_{2}(x, t)+6 b_{2} x y t^{2}+2 b_{4} x y t^{3}$
By Lemma 2.1, as before, $b_{2}=0=b_{4}, x B^{*}(y, t)+6 y E_{2}(x, t)=t E_{3}(x, y)$ and

$$
\begin{equation*}
D_{1}(x, y, t)=A_{2}(x, y)+A_{3}(x, y, t)+\frac{x B_{1}(y)+6 y C_{3}(x)}{2} t^{2}+\frac{E_{3}(x, y)}{6} t^{3} \tag{20}
\end{equation*}
$$

and Eq.(19) becomes

$$
\begin{equation*}
D_{3}(x, t)=C_{3}(x)+E_{2}(x, t) \tag{21}
\end{equation*}
$$

where A_{3} is additive in the third variable. Note that E_{3} is additive in the second variable since $E_{3}(x, y)=x B^{*}(y, 1)+6 y E_{2}(x, 1)$. If we substitute $t=0$ into Eq.(20), we can see that $A_{2}(x, y)=D_{1}(x, y, 0)$ which is additive in the second variable. From Eq.(20), all functions other that A_{3} are additive in the second variable. Hence, A_{3} must also be additive in the second variable.

Gathering all we have so far and substituting Eqs.(17), (18), (20) and (21) into Eq.(9)

$$
\begin{align*}
f(x, y, t)= & C_{0}(x)+A_{1}(x, t)+\frac{b_{0} x+2 C_{1}(x)}{2} t^{2}+\frac{C_{2}(x)}{6} t^{3} \\
& +A_{2}(x, y)+A_{3}(x, y, t)+\frac{x B_{1}(y)+6 y C_{3}(x)}{2} t^{2}+\frac{E_{3}(x, y)}{6} t^{3} \\
& +y^{2}\left(C_{1}(x)+\frac{t C_{2}(x)-x B_{2}(t)}{2}\right)+y^{3}\left(C_{3}(x)+E_{2}(x, t)\right) \\
= & C_{0}(x)+\left(y^{2}+t^{2}\right) C_{1}(x)+\left(t^{3}+3 y^{2} t\right) \frac{C_{2}(x)}{6}+\left(y^{3}+3 y t^{2}\right) C_{3}(x) \\
& +\frac{b_{0}}{2} x t^{2}+A_{1}(x, t)+A_{2}(x, y)+A_{3}(x, y, t) \\
& +x t^{2} \frac{B_{1}(y)}{2}+t^{3} \frac{E_{3}(x, y)}{6}-x y^{2} \frac{B_{2}(t)}{2}+y^{3} E_{2}(x, t) \tag{22}\\
g(y, t)= & b_{0}+B_{1}(y)+B_{2}(t)+t E_{3}(1, y)-6 y E_{2}(1, t) \tag{23}
\end{align*}
$$

Now that we have obtained g, we will show that each function in Eq.(22) is additive in the first variable. Since $C_{0}(x)=f(x, 0,0)$, we have that C_{0} is additive. If we substitute $t=0$ into Eq.(22), we have that

$$
\varphi_{y}(x) \equiv y^{2} C_{1}(x)+y^{3} C_{3}(x)+A_{2}(x, y)=f(x, y, 0)-C_{0}(x)
$$

where we have defined $\varphi_{y}(x)$ to be the term on the left-hand side of the above equation. Since $f(x, y, 0)-C_{0}(x)$ is an additive function of $x, \varphi_{y}(x)$ is also an additive function of x. One can verify that

$$
\begin{aligned}
C_{1}(x) & =-\frac{5}{2} \varphi_{1}(x)+2 \varphi_{2}(x)-\frac{1}{2} \varphi_{3}(x), \\
C_{3}(x) & =\frac{1}{2} \varphi_{1}(x)-\frac{1}{2} \varphi_{2}(x)+\frac{1}{6} \varphi_{3}(x), \\
A_{2}(x, y) & =3 \varphi_{y}(x)-\frac{3}{2} \varphi_{2 y}(x)+\frac{1}{3} \varphi_{3 y}(x) .
\end{aligned}
$$

Hence C_{1} and C_{3} are additive and A_{2} is bi-additive (note that A_{2} is already additive in the second variable). For other functions in Eq. (22), we can show in a similar way that each of them is additive in the first variable.

Now we substitute Eq.(22) and Eq.(23) into Eq.(5), we get

$$
\begin{equation*}
t E_{3}(x, y)-x t E_{3}(1, y)=6 y E_{2}(x, t)-6 x y E_{2}(1, t) . \tag{24}
\end{equation*}
$$

Define $T(x, y)=E_{3}(x, y)-x E_{3}(1, y)$. By Eq.(24), we have

$$
T(x, y)=6 y E_{2}(x, 1)-6 x y E_{2}(1,1)=y C_{4}(x)
$$

where $C_{4}(x)=6 E_{2}(x, 1)-6 x E_{2}(1,1)$. Note that C_{4} is additive. From the definition of T, we get

$$
\begin{equation*}
t E_{3}(x, y)=x t E_{3}(1, y)+y t C_{4}(x) \tag{25}
\end{equation*}
$$

From Eqs.(24) and (25), we obtain

$$
\begin{equation*}
6 y E_{2}(x, t)=6 x y E_{2}(1, t)+y t C_{4}(x) . \tag{26}
\end{equation*}
$$

Substituting Eqs.(25) and (26) into Eq.(22), we get the functional equation f and g as in Eqs.(6) and (7).

Conversely, if f and g are given by Eqs.(6) and (7), respectively, then it can be verified that (5) holds. This completes the proof.

Corollary 3.2. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that g satisfies Eq.(3). Then

$$
\begin{equation*}
g(y, t)+\Delta_{y, h_{1}}^{2} f(y, t)=\Delta_{t, h_{2}}^{2} f(y, t) \tag{27}
\end{equation*}
$$

if and only if

$$
\begin{aligned}
f(y, t)=a_{0} & +a_{1}\left(y^{2}+t^{2}\right)+a_{2}\left(t^{3}+3 y^{2} t\right)+a_{3}\left(y^{3}+3 y t^{2}\right) \\
& +a_{4}\left(y t^{3}+y^{3} t\right)+b_{0} t^{2}+A_{1}(t)+A_{2}(y)+A_{3}(y, t) \\
& +t^{2} B_{1}(y)+t^{3} B_{3}(y)-y^{2} B_{2}(t)-y^{3} B_{4}(t) \\
g(y, t)=2 b_{0} & +2 B_{1}(y)+2 B_{2}(t)+6 t B_{3}(y)+6 y B_{4}(t)
\end{aligned}
$$

where $a_{0}, a_{1}, \ldots, a_{4}, b_{0}$ are constants, $A_{1}, A_{2}, B_{1}, B_{2}, B_{3}, B_{4}$ are additive functions and A_{3} is 3-additive.

Proof. Multiplying Eq.(27) by x, we get

$$
x g(y, t)+\Delta_{y, h_{1}}^{2} x f(y, t)=\Delta_{t, h_{2}}^{2} x f(y, t)
$$

Define $f^{*}(x, y, t)=x f(y, t)$. The above equation then becomes

$$
x g(y, t)+\Delta_{y, h_{1}}^{2} f^{*}(x, y, t)=\Delta_{t, h_{2}}^{2} f^{*}(x, y, t)
$$

Applying Lemma 3.1 and using the fact that $f(y, t)=f^{*}(1, y, t)$, we get the desired conclusion.

Now that we have Lemma 3.1, we are ready to solve Eq.(4).
Theorem 3.3. A function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfy (4) if and only if

$$
\begin{aligned}
f(x, y, t)= & a_{0}+\left(A_{1}(x)+a_{1}\right)\left(y^{2}+t^{2}\right)+\left(A_{2}(x)+a_{2}\right)\left(t^{3}+3 y^{2} t\right) \\
& +\left(A_{3}(x)+a_{3}\right)\left(y^{3}+3 y t^{2}\right)+\left(A_{4}(x)+a_{4}\right)\left(y^{3} t+y t^{3}\right) \\
& +\left(A_{5}(y)+a_{5}\right)\left(x^{2}+t^{2}\right)+\left(A_{6}(y)+a_{6}\right)\left(x^{3}+3 x t^{2}\right) \\
& +\left(A_{7}(y)+a_{7}\right)\left(t^{3}+3 x^{2} t\right)+\left(A_{8}(y)+a_{8}\right)\left(x^{3} t+x t^{3}\right) \\
& +\left(A_{9}(t)+a_{9}\right)\left(x^{2}-y^{2}\right)+\left(A_{10}(t)+a_{10}\right)\left(y^{3}-3 x^{2} y\right) \\
& +\left(A_{11}(t)+a_{11}\right)\left(x^{3} y-x y^{3}\right)+\left(A_{12}(t)+a_{12}\right)\left(x^{3}-3 x y^{2}\right)+A_{13}(x) \\
& +A_{14}(t)+A_{15}(y)+B_{1}(x, y)+B_{2}(y, t)+B_{3}(x, t)+T_{3}(x, y, t)
\end{aligned}
$$

where $a_{1}, a_{2}, \ldots, a_{12}$ are constants, $A_{1}, A_{2}, \ldots, A_{15}$ are additive, B_{1}, B_{2}, B_{3} 's are bi-additive and T is 3-additive.

Proof. Firstly, we put $h_{2}=1=h_{3}$ in Eq.(4) and then apply Lemma 2.1. We obtain

$$
\begin{equation*}
f(x, y, t)=A(y, t)+B(x, y, t)+x^{2} C(y, t)+x^{3} D(y, t) \tag{28}
\end{equation*}
$$

where B is additive in the first variable. Substitute Eq.(28) into Eq.(4), we have

$$
\begin{aligned}
2 C(y, t)+6 x D(y, t) & +\Delta_{y, h_{2}}^{2}\left(A(y, t)+B(x, y, t)+x^{2} C(y, t)+x^{3} D(y, t)\right) \\
& =\Delta_{t, h_{3}}^{2}\left(A(y, t)+B(x, y, t)+x^{2} C(y, t)+x^{3} D(y, t)\right)
\end{aligned}
$$

If we replace x with $r x$, where $r \in \mathbb{Q}$, we will get a polynomial of r with infinite number of roots, and hence all of its coefficients must be zero;

$$
\begin{array}{r}
2 C(y, t)+\Delta_{y, h_{2}}^{2} A(y, t)=\Delta_{t, h_{3}}^{2} A(y, t), \\
6 x D(y, t)+\Delta_{y, h_{2}}^{2} B(x, y, t)=\Delta_{t, h_{3}}^{2} B(x, y, t), \\
x^{2} \Delta_{y, h_{2}}^{2} C(y, t)=x^{2} \Delta_{t, h_{3}}^{2} C(y, t), \\
x^{3} \Delta_{y, h_{2}}^{2} D(y, t)=x^{3} \Delta_{t, h_{3}}^{2} D(y, t) . \tag{32}
\end{array}
$$

Applying Corollary 3.2 to Eq.(29) and Eq.(31), we have

$$
\begin{aligned}
A(y, t)= & a_{0}+a_{1}\left(y^{2}+t^{2}\right)+a_{2}\left(t^{3}+3 y^{2} t\right)+a_{3}\left(y^{3}+3 y t^{2}\right)+a_{4}\left(y^{3} t+y t^{3}\right)+c_{0} t^{2} \\
& +A_{1}(t)+A_{2}(y)+A_{3}(y, t)+t^{2} C_{1}(y)+t^{3} C_{3}(y)-y^{2} C_{2}(t)-y^{3} C_{4}(t) \\
C(y, t)= & c_{0}+C_{1}(y)+C_{2}(t)+3 t C_{3}(y)+3 y C_{4}(t)
\end{aligned}
$$

and when applying Lemma 3.1 to Eq.(30) and Eq.(32), we obtain

$$
\begin{align*}
B(x, y, t)= & B_{0}(x)+\left(y^{2}+t^{2}\right) B_{1}(x)+\left(t^{3}+3 y^{2} t\right) B_{2}(x)+\left(y^{3}+3 y t^{2}\right) B_{3}(x) \\
& +\left(y^{3} t+y t^{3}\right) B_{4}(x)+3 d_{0} x t^{2}+E_{1}(x, t)+E_{2}(x, y)+E_{3}(x, y, t) \\
& +3 x t^{2} D_{1}(y)+3 x t^{3} D_{3}(y)-3 x y^{2} D_{2}(t)-3 x y^{3} D_{4}(t) \\
D(y, t)= & d_{0}+D_{1}(y)+D_{2}(t)+3 t D_{3}(y)+3 y D_{4}(t) \tag{33}
\end{align*}
$$

Now we have

$$
\begin{aligned}
f(x, y, t)= & a_{0}+\left(B_{1}(x)+a_{1}^{*}\right)\left(y^{2}+t^{2}\right)+\left(B_{2}^{*}(x)+a_{2}^{*}\right)\left(t^{3}+3 y^{2} t\right) \\
& +\left(B_{3}(x)+a_{3}^{*}\right)\left(y^{3}+3 y t^{2}\right)+\left(B_{4}(x)+a_{4}\right)\left(y^{3} t+y t^{3}\right) \\
& +\left(C_{1}^{*}(y)+c_{0}^{*}\right)\left(x^{2}+t^{2}\right)+\left(D_{1}(y)+d_{0}^{*}\right)\left(x^{3}+3 x t^{2}\right) \\
& +\left(C_{3}(y)+k_{1}\right)\left(t^{3}+3 x^{2} t\right)+\left(3 D_{3}(y)+k_{2}\right)\left(x^{3} t+x t^{3}\right) \\
& +\left(C_{2}^{*}(t)+k_{3}\right)\left(x^{2}-y^{2}\right)-\left(C_{4}(t)+k_{4}\right)\left(y^{3}-3 x^{2} y\right) \\
& +\left(D_{2}^{*}(t)+k_{5}\right)\left(x^{3}-3 x y^{2}\right)+\left(3 D_{4}(t)+k_{6}\right)\left(x^{3} y-x y^{3}\right) \\
& +B_{0}(x)+A_{1}(t)+A_{2}(y)+E_{2}(x, y)+A_{3}(y, t)+E_{1}(x, t)+E_{3}(x, y, t)
\end{aligned}
$$

where we have defined

$$
\begin{aligned}
C_{2}(t)^{*} & =C_{2}(t)-3 k_{1}(t), & a_{2}^{*} & =a_{2}-k_{1}, \\
D_{2}^{*}(t) & =D_{2}(t)-k_{2} t, & B_{2}^{*}(x) & =B_{2}(x)-k_{2} x, \\
c_{0}^{*} & =c_{0}-k_{3} & a_{1}^{*} & =a_{1}+k_{3}, \\
a_{3}^{*} & =a_{3}+k_{4}+k_{6}, & C_{1}^{*}(y) & =C_{1}(y)-3 k_{4} y, \\
d_{0}^{*} & =d_{0}-k_{5}-k_{6}, & B_{1}^{*}(x) & =B_{1}(x)+3 k_{5} x .
\end{aligned}
$$

It is straightforward to verify that the function of the above form is indeed the general solution of Eq.(4)

The next corollary extends our result to a difference functional equation analogous to the wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

Corollary 3.4. Let $f_{1}, f_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $c \in \mathbb{R} \backslash\{0\}$ such that $f_{2}(x, y, t)=$ $f_{1}(x, y, c t)$. Then f_{1} satisfies Eq.(4) if and only if f_{2} satisfies the equation

$$
\begin{equation*}
c^{2}\left(\Delta_{x, h_{1}}^{2} f(x, y, t)+\Delta_{y, h_{2}}^{2} f(x, y, t)\right)=\Delta_{t, h_{3}}^{2} f(x, y, t) \tag{34}
\end{equation*}
$$

Proof. Observe that

$$
\begin{aligned}
& c^{2}\left(\left(\Delta_{1, h_{1}}^{2} f_{2}\right)(x, y, t)+\left(\Delta_{2, h_{2}}^{2} f_{2}\right)(x, y, t)\right)-\left(\Delta_{3, h_{3}}^{2} f_{2}\right)(x, y, t) \\
= & c^{2}\left(\left(\Delta_{1, h_{1}}^{2} f_{2}\right)(x, y, t)+\left(\Delta_{2, h_{2}}^{2} f_{2}\right)(x, y, t)\right) \\
& -\left(\frac{f_{2}\left(x, y, t+h_{3}\right)-2 f_{2}(x, y, t)+f_{2}\left(x, y, t-h_{3}\right)}{h_{3}^{2}}\right) \\
= & c^{2}\left(\left(\Delta_{1, h_{1}}^{2} f_{1}\right)(x, y, c t)+\left(\Delta_{2, h_{2}}^{2} f_{1}\right)(x, y, c t)\right) \\
& -c^{2}\left(\frac{f_{1}\left(x, y, c t+c h_{3}\right)-2 f_{1}(x, y, c t)+f_{1}\left(x, y, c t-c h_{3}\right)}{\left(c h_{3}\right)^{2}}\right) \\
= & c^{2}\left(\left(\Delta_{1, h_{1}}^{2} f_{1}\right)\left(x, y, t^{\prime}\right)+\left(\Delta_{2, h_{2}}^{2} f_{1}\right)\left(x, y, t^{\prime}\right)\right)-c^{2}\left(\Delta_{3, h_{3}^{\prime}}^{2} f_{1}\right)\left(x, y, t^{\prime}\right)
\end{aligned}
$$

where $t^{\prime}=c t$ and $h_{3}^{\prime}=c h_{3}$. Hence f_{1} satisfies Eq.(4) if and only if f_{2} satisfies Eq.(34).

References

[1] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing, 2002.
[2] S. Haruki, On the general solution of a nonsymmetric partial difference functional equation analogous to the wave equation, Aequationes Mathematicae, 36(1988), 20-31.

Teerapol Sukhonwimolmal
Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University
Bangkok, Thailand
Email: teera.sukhon@gmail.com

Pattanee Udomkavanich
Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University
Bangkok, Thailand
Email: pattanee.u@chula.ac.th

Paisan Nakmahachalasint
Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University
Bangkok, Thailand
Email: paisan.n@chula.ac.th

[^0]: * Corresponding author

