Almost Quasi-mininjective Modules

Sarun Wongwai

Received 19 Oct 2009
Revised 28 Jun 2010
Accepted 20 Jul 2010

Abstract: Let M be a right R-module, $S = \text{End}_R(M)$. The module M is called almost quasi-mininjective (or AQ-mininjective) if, for any simple M-cyclic submodule $s(M)$ of M, there exists a left ideal X_s of S such that $l_S(\text{Ker}(s)) = Ss \oplus X_s$ as left S-modules. In this paper, we give some characterizations and properties of AQ-mininjective modules.

Keywords: Almost Quasi-mininjective Modules, Endomorphism Rings

2000 Mathematics Subject Classification: 16D50, 16D70, 16D80

1 Introduction

Let R be a ring. A right R-module M is called principally injective (or P-injective) if, every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M. Equivalently, $l_M(r_R(a)) = Ma$ for all $a \in R$, where l_M and r_R are the left and right annihilators in M and R, respectively. In [5], Nicholson and Yousif studied the structure of principally injective rings and gave some applications. They also continued to study rings with some other kind of injectivity, namely, mininjective rings [6]. A right R-module M is called mininjective if, every R-homomorphism from a simple right ideal of R to M can be extended to an R-homomorphism from R to M, or equivalently, if kR is simple, $k \in R$, $l_M(r_R(k)) = Mk$. If the regular right R-module R_R is mininjective, then the ring R is said to be a right mininjective ring. In [10], right mininjective rings are generalized to almost mininjective rings, that is, a
right R-module M is called \textit{almost mininjective} (or A-mininjective) if, for any simple right ideal kR of R, there exists an S-submodule X_k of M such that $l_M(r_R(k)) = Mk \bigoplus X_k$ as left S-modules. If R_R is an almost mininjective module, then we call R is a \textit{right almost mininjective ring}. The nice structure of almost mininjective rings draws our attention to define AQ-mininjective modules, and to investigate their characterizations and properties.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R-modules. For right R-modules M and N, $\text{Hom}_R(M,N)$ denotes the set of all R-homomorphisms from M to N and $S = \text{End}_R(M)$. A submodule N of M is said to be an M-cyclic submodule of M if it is the image of an element of S. By notation $N \subset^c M$ ($N \subset^e M$) we mean that N is a direct summand (an essential submodule) of M. We denote the socle and the singular submodule of M by $\text{Soc}(M)$ and $Z(M)$, respectively, and that $J(M)$ denotes the Jacobson radical of M.

Following [7], for an R-module N and a submodule P of N, we will identify $\text{Hom}_R(N, M)$ with the set of maps in $\text{Hom}_R(P, M)$ that can be extended to N, and hence $\text{Hom}_R(N, M)$ becomes a left S-submodule of $\text{Hom}_R(P, M)$. In particular, for an element $s \in S$, S will be regarded as a left S-submodule of $\text{Hom}_R(s(M), M)$.

2 AQ-mininjective Modules

\textbf{Definition 2.1.} Let M be a right R-module, $S = \text{End}_R(M)$. The module M is called \textit{almost quasi-mininjective} (or AQ-mininjective) if, for any simple M-cyclic submodule $s(M)$ of M, there exists a left ideal X_s of S such that $l_S(\text{Ker}(s)) = Ss \bigoplus X_s$ as left S-modules.

\textbf{Lemma 2.2.} Let M be a right R-module and let $s(M)$ be an M-cyclic submodule of M.

1. If $\text{Hom}_R(s(M), M) = S \bigoplus Y$ as left S-modules, then $l_S(\text{Ker}(s)) = Ss \bigoplus X$ as left S-modules, where $X = \{ f_s : f \in Y \}$.

2. If $l_S(\text{Ker}(s)) = Ss \bigoplus X$ for some $X \subset S$ as left S-modules, then we have $\text{Hom}_R(s(M), M) = S \bigoplus Y$ as left S-modules, where $Y = \{ f \in \text{Hom}_R(s(M), M) : f_s \in X \}$.
(3) \(Ss \) is a direct summand of \(l_S(Ker(s)) \) as left \(S \)-modules if and only if \(S \) is a direct summand of \(\text{Hom}_R(s(M), M) \) as left \(S \)-modules.

Proof. Define \(\theta : \text{Hom}_R(s(M), M) \to l_S(Ker(s)) \) by \(\theta(f) = f s \) for every \(f \in \text{Hom}_R(s(M), M) \). It is obvious that \(\theta \) is an \(S \)-monomorphism. For \(t \in l_S(Ker(s)) \), define \(g : s(M) \to M \) by \(g(s(m)) = t(m) \) for every \(m \in M \). Since \(Ker(s) \subset Ker(t) \), \(g \) is well-defined, so it is clear that \(g \) is an \(R \)-homomorphism. Then \(\theta(g) = gs = t \). Therefore \(\theta \) is an \(S \)-isomorphism. Let \(fs \in Ss \). Since \(fs \in l_S(Ker(s)) \), there exists \(\varphi \in Hom_R(s(M), M) \) such that \(\theta(\varphi) = fs \), so \(\varphi s = fs \).

Define \(\hat{\varphi} : M \to M \) by \(\hat{\varphi}(m) = f(m) \) for every \(m \in M \). It is clear that \(\hat{\varphi} \) is an \(R \)-homomorphism and is an extension of \(\varphi \). Then \(fs = \hat{\varphi}s = \theta(\hat{\varphi}) \). This shows that \(Ss \subset \theta(S) \). The other inclusion is clear. Then \(\theta(S) = Ss \) and \(X = \theta(Y) = \{fs : f \in Y\} \). Then the lemma follows.

From Lemma 2.2, the following corollary follows.

Corollary 2.3. Let \(M \) be a right \(R \)-module and let \(s(M) \) be an \(M \)-cyclic submodule of \(M \). Then \(l_S(Ker(s)) = Ss \) if and only if every \(R \)-homomorphism from \(s(M) \) to \(M \) can be extended to \(M \).

Theorem 2.4. The following conditions are equivalent:

1. \(M \) is \(AQ \)-mininjective.

2. There exists an indexed set \(\{X_s : s \in S\} \) of left ideals of \(S \) with the property that if \(s(M) \) is simple, \(s \in S \), then \(l_S(Im(t) \cap Ker(s)) = (X_{st} : t) + Ss \) and \((X_{st} : t) \cap Ss \subset l_S(t) \) for all \(t \in S \), where \((X_{st} : t)_l = \{g \in S : gt \in X_{st}\} \) if \(st \neq 0 \) and \(X_0 = 0 \).

Proof. (1) \(\Rightarrow \) (2) Let \(s(M) \) be a simple \(M \)-cyclic submodule of \(M \). Then there exists a left ideal \(X_s \) of \(S \) such that \(l_S(Ker(s)) = Ss \bigoplus X_s \) as left \(S \)-modules. Let \(t \in S \). If \(st \neq 0 \), then for any \(g \in l_S(Im(t) \cap Ker(s)) \) we have \(Ker(st) \subset Ker(gt) \). Since \(s(M) \) is simple, \(st(M) = s(M) \). Then there exists a left ideal \(X_{st} \) of \(S \) such that \(l_S(Ker(st)) = Sst \bigoplus X_{st} \) as left \(S \)-modules. Thus \(gt \in Sst \bigoplus X_{st} \) because \(gt \in l_S(Ker(gt)) \subset l_S(Ker(st)) \). Write \(gt = f(st + x) \) where \(f \in S \) and \(x \in X_{st} \). Then \((g - f s)t = x \in X_{st} \), so \(g - f s \in (X_{st} : t)_l \). It follows that \(g \in (X_{st} : t)_l + Ss \). This shows that \(l_S(Im(t) \cap Ker(s)) \subset (X_{st} : t)_l + Ss \). Conversely, it is clear that \(Ss \subset l_S(Im(t) \cap Ker(s)) \). Let \(y \in (X_{st} : t)_l \). Then \(yt \in X_{st} \subset l_S(Ker(st)) \). If \(t(m) \in Im(t) \cap Ker(s) \), then \(st(m) = 0 \) and so \(yt(m) = 0 \).
Hence \(y \in l_S(I \cap \ker(s)) \). This shows that \((X_{st} : t)_l \subset l_S(I \cap \ker(s))\). Therefore \(l_S(I \cap \ker(s)) = (X_{st} : t)_l + Ss \). If \(gs \in (X_{st} : t)_l \cap Ss \), then \(gst \in X_{st} \cap Sst = 0\). Hence \(gs \in l_S(t)\).

(2) \(\Rightarrow \) (1) Let \(s(M) \) be a simple \(M \)-cyclic submodule of \(M \). Then there exists a left ideal \(X_s \) of \(S \) such that \(l_S(\ker(s)) = l_S(I \cap \ker(s)) = (X_s : 1)_l + Ss \) and \((X_s : 1)_l \cap Ss \subset l_S(1) = 0\). Note that \((X_s : 1)_l = X_s\). Then (1) follows.

Note that, the ring \(R \) is right almost \(\sigma \)-mininjective if and only if \(R_R \) is \(AQ \)-mininjective. From this result and Theorem 2.4 we have

Corollary 2.5. [10, Theorem 3.1] The following conditions are equivalent:

(i) \(R \) is right \(\sigma \)-mininjective.

(ii) There exists an indexed set \(\{X_a : a \in R\} \) of left ideals of \(R \) with the property that if \(kR \) is simple, \(k \in R \), then \(\ell[aR \cap r(k)] = (X_{ka} : a)_l + Rk \) and \((X_{ka} : a)_l \cap Rk \subset l(a) \) for all \(a \in R \), where \((X_{ka} : a)_l = \{x \in R : xa \in X_{ka}\} \) if \(ka \neq 0 \) and \(X_0 = 0 \).

Following [6], we consider the conditions \(MC_2 \) and \(MC_3 \) for a ring \(R \).

\(MC_2 \): If \(kR \simeq eR \) is simple, \(e = e^2 \), then \(kR = gR \), for some \(g = g^2 \).

\(MC_3 \): If \(eR \neq fR \) are simple, \(e = e^2, f = f^2 \), then \(eR \oplus fR = gR \), for some \(g = g^2 \).

The next proposition shows that the conditions \((MC_2)\) and \((MC_3)\) also hold in an \(AQ-\)-mininjective module.

Proposition 2.6. Let \(M \) be an \(AQ-\)-mininjective module and \(S = \text{End}_R(M) \).

(1) If \(e(M) \simeq k(M) \) is simple, \(e^2 = e \in S \), then \(k(M) = g(M) \), for some \(g^2 = g \in S \).

(2) If \(e(M) \neq f(M) \) are simple, \(e^2 = e \in S, f^2 = f \in S \), then \(e(M) \oplus f(M) = g(M) \), for some \(g^2 = g \in S \).

Proof. (1) Let \(e(M) \simeq k(M) \) is a simple submodule of \(M \), \(e^2 = e \in S \), and let \(\sigma : e(M) \rightarrow k(M) \) be an \(R-\)isomorphism. Set \(\alpha = \sigma e \). Then \(\alpha(M) = k(M) \) and \(\ker(e) = \ker(\alpha) \), so \(\alpha(M) \) is a simple submodule of \(M \). Then \(e \in l_S(\ker(e)) \). By [6, Theorem 3.1], \(l_S(\ker(e)) = S \alpha \oplus X_{\alpha} \). Thus \(X_{\alpha} = \text{a left ideal of } S \), and so \(e = a \alpha \) for some \(\alpha \in S \). Write \(e = sa + x \) where \(s \in S \) and \(x \in X_{\alpha} \). Then \(e = sa + x \) and so \(\alpha - a \alpha = ax \in S \alpha \cap X_{\alpha} = 0 \), hence \(\alpha = a \alpha \). Put \(g = a \alpha \). Then \(g^2 = g \) and \(k(M) = g(M) \).
(2) Let \(e(M) \neq f(M) \) are simple, \(e^2 = e \in S, f^2 = f \in S \). Then we have \(e(M) \bigoplus f(M) = e(M) \bigoplus (1 - e)f(M) \). If \((1 - e)f(M) = 0 \), then \(e(M) \bigoplus f(M) = e(M) \), because by assumption we have \(e(M) \cap f(M) = 0 \). Hence \(e(M) \bigoplus f(M) \) is a direct summand of \(M \). If \((1 - e)f(M) \neq 0 \), then \(f(M) \simeq (1 - e)f(M) \) so \((1 - e)f(M) = g(M) \), \(g^2 = g \in S \), by (1). Then \(eg = 0 \) so \(h = e + g - ge \) is an idempotent such that \(he = e = eh \) and \(hg = g = gh \). If \(x \in e(M) \bigoplus f(M) \), then \(x \in e(M) \bigoplus (1 - e)f(M) = e(M) \bigoplus g(M) \). Write \(x = e(m) + g(n) \). It follows that \(x = he(m) + hg(n) = h(e(m) + g(n)) \in h(M) \). This shows that \(e(M) \bigoplus f(M) \subset h(M) \). The other inclusion is clear. Then \(e(M) \bigoplus f(M) = h(M) \).

Proposition 2.7. Let \(M \) be an \(AQ \)-mininjective module which is a principal self-generator. Then \(Soc(M_R) \subset r_M(J(S)) \).

Proof. Let \(mR \) be a simple submodule of \(M \). Suppose \(\alpha(m) \neq 0 \) for some \(\alpha \in J(S) \). As \(M \) is a principal self-generator, \(mR = \sum_{s \in I} s(M) \) for some \(I \subset S \). Since \(mR \) is a simple, \(mR = s(M) \) for some \(0 \neq s \in I \). Then \(\alpha s \neq 0 \) and \(\text{Ker}(\alpha s) = \text{Ker}(s) \). Note that \(\alpha s(M) \) is a nonzero homomorphic image of the simple module \(s(M) \), then \(\alpha s(M) \) is simple. Since \(M \) is \(AQ \)-mininjective, there exists a left ideal \(X_{\alpha s} \) of \(S \) such that \(l_S(\text{Ker}(\alpha s)) = \alpha s \bigoplus X_{\alpha s} \) as left \(S \)-modules. Thus \(l_S(\alpha s) = \alpha s \bigoplus X_{\alpha s} \). Write \(s = \beta \alpha s + x \) where \(\beta \in S \) and \(x \in X_{\alpha s} \). Then \((1 - \beta \alpha)s = x \) and so \(s = (1 - \beta \alpha)^{-1}x \in X_{\alpha s} \). It follows that \(\alpha s \in \alpha s \bigcap X_{\alpha s} = 0 \), a contradiction.

The following corollary follows from Proposition 2.7 and [8, 21.15].

Corollary 2.8. Let \(M \) be an \(AQ \)-mininjective module which is a principal self-generator. If \(S \) is semilocal, then \(Soc(M_R) \subset Soc(SM) \).

Let \(M \) be a right \(R \)-module with \(S = \text{End}_R(M) \). Following [4], write \(\Delta = \{ s \in S : \text{ker}(s) \subset^e M \} \). It is known that \(\Delta \) is an ideal of \(S \) [4, Lemma 3.2].

Proposition 2.9. Let \(M \) be an \(AQ \)-mininjective module which is a principal self-generator and \(Soc(M_R) \subset^e M \). Then \(J(S) \subset \Delta \).

Proof. Let \(s \in J(S) \). If \(\text{Ker}(s) \not\subset^e M \), then \(\text{Ker}(s) \cap N = 0 \) for some nonzero submodule \(N \) of \(M \). Since \(Soc(M_R) \subset^e M \), \(Soc(M_R) \cap N \neq 0 \). Then there exists a simple submodule \(kR \) of \(M \) such that \(kR \subset Soc(M_R) \cap N \) [1, Corollary 9.10]. As \(M \) is a principal self-generator and \(kR \) is simple, \(kR = t(M) \) for some \(t \in S \). It follows that \(\text{Ker}(st) = \text{Ker}(t) \). Since \(ts(M) \) is a nonzero homomorphic image
of the simple module $t(M)$, $st(M) = t(M)$. Then there exists a left ideal X_{st} of S such that $t \in l_S(\ker(t)) = l_S(\ker(st)) = Sst \bigoplus X_{st}$. Write $t = \alpha st + x$ where $\alpha \in S$ and $x \in X_{st}$. It follows that $t = (1 - \alpha s)^{-1} x$. Then $st = s(1 - \alpha s)^{-1} x \in Sst \cap X_{st} = 0$, a contradiction.

Proposition 2.10. Let M be an AQ–mininjective module which is a principal self-generator and $\text{Soc}(M_R) \subset e M$. If M is nonsingular, then $J(S) = 0$.

Proof. Since $J(S) \subset \triangle$ by Proposition 2.9, we show that $\triangle = 0$. Let $s \in \triangle$ and let $m \in M$. Define $\varphi : R \to M$ by $\varphi(r) = mr$. It is clear that φ is an R–homomorphism. Thus

$$r_R(s(m)) = \{ r \in R : s(mr) = 0 \}$$

$$= \{ r \in R : mr \in \ker(s) \}$$

$$= \{ r \in R : \varphi(r) \in \ker(s) \}$$

$$= \varphi^{-1}(\ker(s)).$$

It follows that $\varphi^{-1}(\ker(s)) \subset e R$ [3, Lemma 5.8(a)] so $r_R(s(m)) \subset e R$. Thus $s(m) \in Z(M_R) = 0$ because M is nonsingular. As this is true for all $m \in M$, we have $s = 0$. Hence $\triangle = 0$ as required.

Acknowledgements: The author wishes to thank the referees for the valuable suggestions and comments.

References

Sarun Wongwai
Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
Email: wsarun@hotmail.com