The Gray Images of Skew-Constacyclic Codes over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$

Somphong Jitman*, Ekkasit Sangwisut†,‡, and Patanee Udomkavanich

Abstract: We study the Gray images of three types of skew constacyclic codes over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$, where $u^e = 0$. For a given automorphism Θ of $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$ induced by an automorphism θ of \mathbb{F}_{p^m}, the Gray images of Θ-$\left(1-u^{e-1}\right)$-constacyclic codes are shown to be θ-permutation invariant codes whose algebraic structures are generalization of quasi-cyclic codes over finite fields. In addition, if the length of codes is not divisible by p, the Gray images of Θ-cyclic and Θ-$\left(1+u^{e-1}\right)$-constacyclic codes are permutatively equivalent to θ-permutation invariant codes. Moreover, our works generalize known results concerning the Gray images of classical cyclic, $\left(1-u^{e-1}\right)$-constacyclic and $\left(1+u^{e-1}\right)$-constacyclic codes over this ring.

Keywords: finite chain ring, Gray map, permutation invariant code, skew constacyclic code

2000 Mathematics Subject Classification: 94B15, 13B25

* The author is supported by the Institute for the Promotion of Teaching Science and Technology of Thailand.
† Corresponding author
‡ The author is supported by the Institute for the Promotion of Teaching Science and Technology of Thailand.
1 Introduction

The discovery of good codes from codes over \mathbb{Z}_4, via the Gray map [10] motivated the study of the Gray images of codes over finite rings in general. Analogous Gray maps have also been defined for codes over other finite chain rings [9], linking these codes to codes over finite fields. Cyclic codes and constacyclic codes form important classes of codes due to their rich algebraic structure. Qian, Zhang and Zhu have characterized the Gray images of $(1 + u)$-constacyclic and cyclic codes over the ring $\mathbb{F}_2 + u\mathbb{F}_2$ in [13] and investigated some constacyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ in [14]. In [7], Congellenmis have introduced $(1 - u^{e-1})$-constacyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + \cdots + u^{e-1}\mathbb{F}_2$ and generalized the results of [13] and [14]. In [16], Udomkavanich and Jitman generalized these results to the ring $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$. The Gray images of $(1 - u^{e-1})$-constacyclic and cyclic codes were studied in the mentioned paper.

Recently, skew (consta) cyclic codes, generalizations of cyclic codes that their (consta) cyclicity is defined with respect to an automorphism of an alphabet ring, have been established in [4], [6], [5] and [11]. Especially, in [11], an algebraic structure of skew constacyclic codes over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$ has been studied.

Motivated by these works, we study the Gray images of three families of skew constacyclic codes over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$, namely, Θ-$(1 - u^{e-1})$-constacyclic, Θ-cyclic and Θ-$(1 + u^{e-1})$-constacyclic codes. In the case where Θ is the identity automorphism, the results on $(1 - u^{e-1})$-constacyclic, cyclic and $(1 + u^{e-1})$-constacyclic codes in [16] can be viewed as a special case of our works.

The paper is organized as follows. Some basic notion and concepts concerning rings, codes and Gray maps are given in Section 2. In Section 3, the structures of the Gray images of Θ-$(1 - u^{e-1})$-constacyclic codes are determined. In the case where the length of codes is not divisible by p, the Gray images of Θ-cyclic and Θ-$(1 + u^{e-1})$-constacyclic codes are studied in Section 4. The conclusion and remarks are given in Section 5.
2 Preliminaries

2.1 Rings

Let \(F_{p^m} \) denote the finite field of cardinality \(p^m \), where \(p \) is a prime number and \(m \) is a positive integer. For \(e \geq 1 \), the set

\[
F_{p^m} + uF_{p^m} + \cdots + u^{e-1}F_{p^m} = \left\{ \sum_{i=0}^{e-1} u^i a_i \mid a_i \in F_{p^m} \right\}
\]

forms a ring, where the addition and multiplication are the usual addition and multiplication of polynomials over \(F_{p^m} \) with indeterminate \(u \) together with the rule \(u^e = 0 \). Since this ring is uniquely determined by \(p, m \) and \(e \), for simplicity, we denoted by \(R(p^m,e) \) the ring \(F_{p^m} + uF_{p^m} + \cdots + u^{e-1}F_{p^m} \).

In other words, an element \(r \in R(p^m,e) \) can be uniquely expressed as

\[
r = a_0 + uw_1 + \cdots + u^{e-1}a_{e-1},
\]

where \(a_i \in F_{p^m} \), for all \(0 \leq i \leq e-1 \).

The ideals of \(R(p^m,e) \) are principal and form the following chain

\[
R(p^m,e) \supseteq (u) \supseteq (u^2) \supseteq \cdots \supseteq (u^{e-1}) \supseteq (0),
\]

where \((u^i) = u^iR(p^m,e) = u^iF_{p^m} + u^{i+1}F_{p^m} + \cdots + u^{e-1}F_{p^m} \) for all \(0 \leq i \leq e-1 \).

According to [8, Lemma 1], the ring \(R(p^m,e) \) may refer as the only finite chain ring of characteristic \(p \), nilpotency index \(e \), and residue field \(F_{p^m} \).

Note that when \(e = 1 \), this ring becomes the finite field \(F_{p^m} \).

In [2], the structure of the automorphism group \(\text{Aut}(R(p^m,e)) \) of \(R(p^m,e) \) has been characterized. For \(\theta \in \text{Aut}(F_{p^m}) \), \(\beta \in F_{p^m}^* \) and \(w \in R(p^m,e) \), let

\[
\Theta_{\theta,\beta,w} : R(p^m,e) \to R(p^m,e)
\]

be defined by

\[
\Theta_{\theta,\beta,w} \left(\sum_{i=0}^{e-1} a_i u^i \right) = \sum_{i=0}^{e-1} u^i \beta^i w^i \theta(a_i).
\]

Proposition 2.1 ([2, Proposition 1]). \(\text{Aut}(R(p^m,e)) = \{ \Theta_{\theta,\beta,w} \mid \theta \in \text{Aut}(F_{p^m}), \beta \in F_{p^m}^* \text{ and } w \in 1 + uF_{p^m} + \cdots + u^{e-1}F_{p^m} \} \), where \(F_{p^m}^* \) denotes the group of units in \(F_{p^m} \).

Corollary 2.2 ([11]). \(\text{Aut}(R(p^m,e)) \) is non-trivial if and only if \(m \geq 2 \) or \(p \) is odd or \(e \geq 3 \).
2.2 Codes

A code C of length n over the finite field (resp., a finite ring) A is a subspace (resp., submodule) of the A-vector space (resp., module) A^n. The Hamming distance $d_{Ham}(u, v)$ between u and v in A^n is defined to be the number of entries which u and v differ. The minimum Hamming distance of a code C, denoted by $d_{Ham}(C)$, is defined by

$$d_{Ham}(C) = \min\{d_{Ham}(u, v) | u, v \in C, u \neq v\}.$$

Given an automorphism Θ of R and Θ fixes 1, 1 will be replaced by "cyclic" code denoted by d where R is called the Θ-code defined by λ. When Θ is the identity automorphism, the subscript Θ will be dropped and specifically, Θ-constacyclic shift.

When Θ is the identity automorphism, the subscript Θ will be dropped and denoted by ρ. A code closed under ρ is called a constacyclic code, or specifically, λ-constacyclic code. Once, $\lambda = 1$, the word "λ-constacyclic" will be replaced by "cyclic".

A characterization of skew constacyclic codes over $R_{(p^m)}$ is given in [11] in terms of skew polynomials for every automorphism in $R_{(p^m)}$ and unit λ in $R_{(p^m)}$.

In this work, we focus on the gray images of skew constacyclic codes over $R_{(p^m)}$ in the case where $\lambda \in \{1, 1-u^{e-1}, 1+u^{e-1}\}$. In addition, an automorphism Θ of $R_{(p^m)}$ is defined by

$$\Theta(a_0 + u_1 + \cdots + u^{e-1}a_{e-1}) = \theta(a_0) + u\theta(a_1) + \cdots + u^{e-1}\theta(a_{e-1}),$$

where θ is an automorphism of F_{p^m}, i.e., Θ is $\Theta_{\theta, 1, 1}$ in Proposition 2.1. The automorphisms in this families are called automorphisms induced by automorphism of F_{p^m} and they form a subgroup of $\text{Aut}(R_{(p^m)})$. It is clear that $\text{ord}(\Theta) = \text{ord}(\theta)$ and Θ fixes 1, $1-u^{e-1}$ and $1+u^{e-1}$.

Let $\sigma: \mathbb{F}_{p^{m(e-1)-1}} \to \mathbb{F}_{p^{m(e-1)-1}}$ be defined by

$$\begin{pmatrix} a(0) \\ a(1) \\ \vdots \\ a(p^{m(e-1)-1}) \end{pmatrix} \mapsto \begin{pmatrix} \varphi(a(0)) \\ \varphi(a(1)) \\ \vdots \\ \varphi(a(p^{m(e-1)-1})) \end{pmatrix},$$

where $\varphi(a) = a^{p(e-1)}$. The map $\rho_{\Theta, \lambda} : R^n_{(p^m)} \to R^n_{(p^m)}$ defined by

$$\rho_{\Theta, \lambda}((a_0, a_1, \ldots, a_{n-1})) = (\Theta(a_{n-1}), \Theta(a_0), \ldots, \Theta(a_{n-2}))$$

is called the Θ-λ-constacyclic shift on $R^n_{(p^m)}$. A code C of length n over $R_{(p^m)}$ is said to be skew-constacyclic, or specifically, Θ-λ-constacyclic if it is closed under the Θ-λ-constacyclic shift.

A characterization of skew constacyclic codes over $R_{(p^m)}$ is given in [11] in terms of skew polynomials for every automorphism in $R_{(p^m)}$ and unit λ in $R_{(p^m)}$.
The Gray Images of Skew-Constacyclic Codes over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{e-1}\mathbb{F}_{p^m}$

where $a^{(i)} \in \mathbb{F}_{p^m}^{pn}$, | a vector concatenation and $\varphi: \mathbb{F}_{p^m}^{pn} \to \mathbb{F}_{p^m}^{pn}$ denotes the cyclic shift on $\mathbb{F}_{p^m}^{pn}$:

$$\varphi((c_0, c_1, \ldots, c_{pn-1})) = (c_{pn-1}, c_0, \ldots, c_{pn-2}).$$

A code \tilde{C} of length $p^{m(e-1)n}$ over \mathbb{F}_{p^m} satisfying $\sigma^{p^{m(e-1)-1}}(\tilde{C}) = \tilde{C}$ is called a quasi-cyclic code of index $p^{m(e-1)-1}$. In general, \tilde{C} is called a θ-permutation invariant code (induced by a permutation $T: \mathbb{F}_{p^m}^{p^{m(e-1)n}} \to \mathbb{F}_{p^m}^{p^{m(e-1)n}}$), a generalization of permutation invariant code [15], if it is invariant under a composition of the permutation T and the map defined by taking θ coordinatewise.

Codes \tilde{C}_1 and \tilde{C}_2 are said to be permutatively equivalent if one can be obtained from the other by permuting the coordinates.

2.3 Homogenous Weights and Gray Maps

A homogeneous distance has been introduced for arbitrary finite chain ring in [9]. In light of this, the homogeneous distance on $\mathbb{R}(p^m, e)^n$ is defined in [16] in terms of the weight function $w_{\text{hom}}(r)$ as follows:

$$w_{\text{hom}}(r) = \sum_{i=0}^{n-1} w_{\text{hom}}(r_i)$$

for all $r = (r_0, r_1, \ldots, r_{n-1}) \in \mathbb{R}(p^m, e)^n$, where

$$w_{\text{hom}}(r_i) = \begin{cases} p^{m(e-2)}(p^m - 1) & \text{if } r_i \in \mathbb{R}(p^m, e) \setminus u^{e-1}\mathbb{R}(p^m, e), \\
 p^{m(e-1)} & \text{if } r_i \in u^{e-1}\mathbb{R}(p^m, e) \setminus \{0\}, \\
 0 & \text{otherwise.} \end{cases}$$

The homogeneous distance $d_{\text{hom}}(r, s)$ between vectors r, s in $\mathbb{R}(p^m, e)^n$ is defined to be $w_{\text{hom}}(r - s)$. The minimum homogeneous distance $d_{\text{hom}}(C)$ of a code C over $\mathbb{R}(p^m, e)$ is defined by

$$d_{\text{hom}}(C) := \min\{d_{\text{hom}}(r, s) \mid r, s \in C, r \neq s\}.$$

In order to recall the Gray map for $\mathbb{R}(p^m, e)$ [16], an element $\epsilon \in \mathbb{Z}_{p^m}$ is viewed uniquely as the p-adic representation

$$\epsilon = \xi_0(\epsilon) + \xi_1(\epsilon)p + \cdots + \xi_{m-1}(\epsilon)p^{m-1},$$
where \(\xi_i(\epsilon) \in \{0,1,\ldots,p-1\} \), for every \(0 \leq i \leq m-1 \). Let \(\alpha \) be a primitive element of \(F_{p^m} \). For each \(\epsilon \in \mathbb{Z}_{p^m} \), the element \(\alpha_\epsilon \in F_{p^m} \) corresponding to \(\epsilon \) is given by

\[
\alpha_\epsilon := \xi_0(\epsilon) + \xi_1(\epsilon)\alpha + \cdots + \xi_{m-1}(\epsilon)\alpha^{m-1}.
\]

Similarly, an element \(\omega \in \mathbb{Z}_{p^{m(\epsilon-1)}} \) is viewed uniquely as the \(p^m \)-adic representation

\[
\omega = \xi_0(\omega) + \xi_1(\omega)p^n + \cdots + \xi_{e-2}(\omega)p^{m(\epsilon-2)},
\]

where \(\xi_i(\omega) \in \{0,1,\ldots,p^m-1\} \), for every \(0 \leq i \leq e-2 \).

The Gray map linked codes over \(R_{p^m,e} \) and codes over \(F_{p^m} \). In [16], the Gray map \(\Phi : R_{p^m,e}^n \rightarrow F_{p^m}^{p^{m(\epsilon-1)}n} \) is defined by

\[
\Phi(r) = (b_0, b_1, \ldots, b_{p^{m(\epsilon-1)}-1}),
\]

for all \(r = a_0(r) + a_1(r) + \cdots + u^{e-1}a_{e-1}(r) \in R_{p^m,e}^n \), where

\[
b_{\omega p^m + \epsilon} = \alpha_\epsilon a_0(r) + \sum_{l=1}^{e-2} \alpha_{\xi_l(\omega)} a_l(r) + a_{e-1}(r), \tag{5}
\]

for all \(0 \leq \omega \leq p^{m(\epsilon-2)} - 1 \) and \(0 \leq \epsilon \leq p^m - 1 \).

The defined Gray map is a distance preserving \(F_{p^m} \)-linear isomorphism.

Theorem 2.3 ([16]). The Gray map \(\Phi \) is a \(F_{p^m} \)-linear isometry from \((R_{p^m,e}^n, d_{\text{hom}}) \) to \((F_{p^m}^{p^{m(\epsilon-1)}n}, d_{\text{Ham}}) \), where \(d_{\text{Ham}} \) denotes the Hamming distance on \(F_{p^m}^{p^{m(\epsilon-1)}n} \).

In (1), an element \(r \in R_{p^m,e}^n \) is uniquely written as

\[
r = a_0 + u a_1 + \cdots + u^{e-1}a_{e-1},
\]

where \(a_i \in F_{p^m} \). Hence, an element \(r \in R_{p^m,e}^n \) can be viewed as

\[
r = a_0(r) + u a_1(r) + \cdots + u^{e-1}a_{e-1}(r), \tag{6}
\]

where \(a_i(r) = (r_{i,0}, r_{i,1}, \ldots, r_{i,n-1}) \) is a vector in \(F_{p^m}^n \), for every \(0 \leq i \leq e-1 \), or

\[
r = (r_0, r_1, \ldots, r_{n-1}), \tag{7}
\]

where \(r_i = r_{0,i} + u r_{1,i} + \cdots + u^{e-1}r_{e-1,i} \in R_{p^m,e}^n \), for every \(0 \leq i \leq n-1 \).

In order to establish the onward results, an element \(r \in R_{p^m,e}^n \) is viewed as in (7), i.e., \(r = (r_0, r_1, \ldots, r_{n-1}) \), where \(r_i = r_{0,i} + u r_{1,i} + \cdots + u^{e-1}r_{e-1,i} \in R_{p^m,e}^n \).
for every $0 \leq i \leq n-1$. Corresponding to this representation of r, $\Phi(r)$ is written as

$$\Phi(r) = (b_0, b_1, \ldots, b_{p^m(e-1)n-1}),$$

where

$$b_{(\omega p^m+e)n+j} = \alpha_\epsilon r_{0,j} + \sum_{i=1}^{e-2} \alpha_\omega^{i-1}(\omega)r_{i,j} + r_{e-1,j}, \quad (8)$$

for all $0 \leq \omega \leq p^{m(e-2)} - 1$, $0 \leq \epsilon \leq p^m - 1$ and $0 \leq j \leq n-1$.

It follows from equations (5) and (8) that for each $0 \leq \omega \leq p^{m(e-2)} - 1$ and $0 \leq \epsilon \leq p^m - 1$, $b_{(\omega p^m+\epsilon)n} = (b_{(\omega p^m+\epsilon)n}, b_{(\omega p^m+\epsilon)n+1}, \ldots, b_{(\omega p^m+\epsilon)n+n-1}).$

3 Gray Images of $\Theta-(1-u^e-1)$-Constacyclic Codes

In this section, we give a characterization of the Gray images of $\Theta-(1-u^e-1)$-constacyclic codes over $R_{(p^m,e)}$, where $\Theta := \Theta_{\theta,1,1}$ is specified in (4) and θ is an automorphism of F_{p^m}.

For each $\theta \in \text{Aut}(F_{p^m})$, let $T_\theta : F_{p^m}^{p^m(e-1)n} \rightarrow F_{p^m}^{p^m(e-1)n}$ be a linear transformation given by

$$T_\theta((a_0, a_1, \ldots, a_{p^m(e-1)n-1})) = (\theta(a_0), \theta(a_1), \ldots, \theta(a_{p^m(e-1)n-1})).$$

Let ν be a permutation on $\{0, 1, \ldots, p^{m(e-1)n} - 1\}$ defined by

$$\nu((\omega p^m + \epsilon)n + j) = (\omega p^m + \epsilon)n + j$$

if $\theta(\alpha_\epsilon) = \alpha_\epsilon$ and $\theta(\alpha_\nu^{(\epsilon)(\omega)}) = \alpha_\nu^{(\epsilon)(\omega)}$, for all $1 \leq l \leq e - 2$. The linear transformation $T_\nu : F_{p^m}^{p^m(e-1)n} \rightarrow F_{p^m}^{p^m(e-1)n}$ induced by ν is given by

$$T_\nu((a_0, a_1, \ldots, a_{p^m(e-1)n-1})) = (a_{\nu(0)}, a_{\nu(1)}, \ldots, a_{\nu(p^m(e-1)n-1)}).$$

Theorem 3.1. $\Phi \circ \rho\theta_{\epsilon,1-u^{-1}} = T_\theta \circ T_\nu \circ \sigma^{p^{m(e-1)}-1} \circ \Phi$.

Proof. First, we observe that

$$\rho_{\theta_{\epsilon,1-u^{-1}}}(r) = (\theta(r_{0,n-1}) + u\theta(r_{1,n-1}) + \cdots + u^{e-1}(\theta(r_{e-1,n-1}) - \theta(r_{0,n-1})),
\theta(r_{0,0}) + u\theta(r_{1,0}) + \cdots + u^{e-1}\theta(r_{e-1,0}), \ldots,
\theta(r_{0,n-2}) + u\theta(r_{1,n-2}) + \cdots + u^{e-1}\theta(r_{e-1,n-2})).$$
Hence, $\Phi \circ \rho_{\Theta,1-\omega\epsilon^{-1}}(r) = (d_0, d_1, \ldots, d_{p^m(e-1)n-1})$, where

$$d_{(\omega p^m + \epsilon)n+j} = \begin{cases}
\alpha_{r_0,j-1} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) \theta(r_{l,j-1}) + \theta(r_{e-1,j-1}) & \text{if } j \neq 0, \\
(\alpha_{r_0,n-1} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) \theta(r_{l,n-1}) + \theta(r_{e-1,n-1})) & \text{if } j = 0,
\end{cases}$$

\begin{align*}
= & \begin{cases}
\alpha_{r_0,j-1} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) \theta(r_{l,j-1}) + \theta(r_{e-1,j-1}) & \text{if } j \neq 0, \\
(\sum_{i=0}^{m-1} \xi_i(\epsilon) \alpha^i - 1) \theta(r_{0,n-1}) + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) \theta(r_{l,n-1}) + \theta(r_{e-1,n-1}) & \text{if } j = 0 \text{ and } \xi_0(\epsilon) \neq 0, \\
(\sum_{i=0}^{m-1} \xi_i(\epsilon) \alpha^i + p - 1) \theta(r_{0,n-1}) + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) \theta(r_{l,n-1}) + \theta(r_{e-1,n-1}) & \text{if } j = 0 \text{ and } \xi_0(\epsilon) = 0,
\end{cases}
\end{align*}

(9)

for all $0 \leq \omega \leq p^m(e-2) - 1$, $0 \leq \epsilon \leq p^m - 1$ and $0 \leq j \leq n - 1$.

For the other direction, by equation (8), we have

$$\Phi(r) = (b_0, b_1, \ldots, b_{p^m(e-1)n-1}),$$

where $b_{(\omega p^m + \epsilon)n+j} = \alpha_{r_0,j} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) r_{l,j} + r_{e-1,j}$, for all $0 \leq \omega \leq p^m(e-2) - 1$, $0 \leq \epsilon \leq p^m - 1$ and $0 \leq j \leq n - 1$.

Let $(c_0, c_1, \ldots, c_{p^m(e-1)n-1}) = \sigma^{\otimes p^m(e-1)^{-1}} \circ \Phi(r)$. Then for each $0 \leq \omega \leq p^m(e-2) - 1$, $0 \leq \epsilon \leq p^m - 1$ and $0 \leq j \leq n - 1$,

$$c_{(\omega p^m + \epsilon)n+j} = \begin{cases}
\alpha_{r_0,j-1} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) r_{l,j-1} + r_{e-1,j-1} & \text{if } j \neq 0, \\
(\sum_{i=0}^{m-1} \xi_i(\epsilon) \alpha^i - 1) r_{0,n-1} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) r_{l,n-1} + r_{e-1,n-1} & \text{if } j = 0 \text{ and } \xi_0(\epsilon) \neq 0, \\
(\sum_{i=0}^{m-1} \xi_i(\epsilon) \alpha^i + p - 1) r_{0,n-1} + \sum_{l=1}^{\epsilon-2} \alpha \zeta_{l-1}(\omega) r_{l,n-1} + r_{e-1,n-1} & \text{if } j = 0 \text{ and } \xi_0(\epsilon) = 0,
\end{cases}$$
Then $T_{\nu} \circ \sigma \otimes p^{m(e-1)-1} \circ \Phi(r) = (f_0, f_1, \ldots, f_{p^m(e-1)n-1})$, where

$$f_{(p^m+\epsilon)n+j} = \begin{cases}
\theta^{-1}(\alpha_r)r_{0,j-1} + \sum_{i=1}^{e-2} \theta^{-1}(\alpha_{\xi_{i-1}}(\omega))r_{i,j-1} + r_{e-1,j-1} & \text{if } j \neq 0, \\
\theta^{-1}(\sum_{i=0}^{m-1} \xi_i(\epsilon)\alpha^i) - 1)r_{0,n-1} + \sum_{i=1}^{e-2} \theta^{-1}(\alpha_{\xi_{i-1}}(\omega))r_{i,n-1} + r_{e-1,n-1} & \text{if } j = 0 \text{ and } \xi_0(\epsilon) \neq 0, \\
\theta^{-1}(\sum_{i=0}^{m-1} \xi_i(\epsilon)\alpha^i + p - 1)r_{0,n-1} + \sum_{i=1}^{e-2} \theta^{-1}(\alpha_{\xi_{i-1}}(\omega))r_{i,n-1} + r_{e-1,n-1} & \text{if } j = 0 \text{ and } \xi_0(\epsilon) = 0,
\end{cases}$$

for all $0 \leq \omega \leq p^{m(e-2)} - 1$, $0 \leq \epsilon \leq p^{m} - 1$ and $0 \leq j \leq n - 1$.

Applying T_θ to (10), we have $\Phi \circ \rho_{\theta,1-\omega^{-1}} = T_\theta \circ T_{\nu} \circ \sigma \otimes p^{m(e-1)-1} \circ \Phi$ as desired.

Theorem 3.2. Let C be a code of length n over $R_{(p^m,\epsilon)}$ and $\Theta := \Theta_{\theta,1,1}$, where θ is an automorphism of F_{p^m}. Then C is a $\Theta-(1-u^e-1)$-constacyclic if and only if $\Phi(C)$ is a θ-permutation invariant code of length $p^{m(e-1)}n$ over F_{p^m} (with respect to $T_{\nu} \circ \sigma \otimes p^{m(e-1)-1}$).

Proof. The necessary part follows from Theorem 3.1, i.e.,

$$T_\theta \circ T_{\nu} \circ \sigma \otimes p^{m(e-1)-1} \circ \Phi(C) = \Phi \circ \rho_{\theta,1-\omega^{-1}}(C) = \Phi(C).$$

For the sufficient part, assume that $\Phi(C)$ is θ-permutation invariant with respect to $T_{\nu} \circ \sigma \otimes p^{m(e-1)-1}$. Then

$$\Phi(C) = T_\theta \circ T_{\nu} \circ \sigma \otimes p^{m(e-1)-1} \circ \Phi(C) = \Phi \circ \rho_{\theta,1-\omega^{-1}}(C).$$

The injectivity of Φ implies $\rho_{\theta,1-\omega^{-1}}(C) = C$, i.e., C is $\Theta-(1-u^e-1)$-constacyclic. \qed

4 Gray Images of Θ-Cyclic and $\Theta-(1+u^e-1)$-Constacyclic Codes

Throughout this section, we assume that p does not divide the length n of codes and $\Theta := \Theta_{\theta,1,1}$ is specified in (4), where θ is an automorphism of F_{p^m}. Then
$gcd(n, p) = 1$, and hence there exists $n' \in \{0, 1, \ldots, p - 1\}$ such that $nn' \equiv 1 \pmod{p}$. Let $\beta = 1 + n'u^{-1}$. Then $\beta^j = (1 + n'u^{-1})^j = 1 +jn'u^{-1} \in R_{[p^m, e]}$, for all $j \in \mathbb{Z}$. In particular, $\beta^n = 1 + u^{-1}$ and $\beta^{-n} = 1 - u^{-1}$. Moreover, $1, 1 + u^{-1}$ and β are fixed by Θ.

Let $\mu : R_{[p^m, e]}^n \to R_{[p^m, e]}^n$ be defined by

$$(r_0, r_1, \ldots, r_{n-1}) \mapsto (r_0, \beta r_1, \ldots, \beta^{n-1}r_{n-1}).$$

(11)

Then both μ and $\mu^2 = \mu \circ \mu$ are $R_{[p^m, e]}$-module automorphisms on $R_{[p^m, e]}^n$.

Proposition 4.1. Let C be a non-empty subset of $R_{[p^m, e]}^n$. Then C is a Θ-cyclic code if and only if $\mu(C)$ is a $\Theta-(1 - u^{-1})$-constacyclic code.

Proof. Assume that C is a linear cyclic code. Let $(r_0, \beta r_1, \ldots, \beta^{n-1}r_{n-1}) \in \mu(C)$. Since μ is injective, $(r_0, r_1, \ldots, r_{n-1}) \in C$. By the linearity and Θ-cyclicity of C, we have $\beta^{-1}(r_{n-1}, r_0, r_1, \ldots, r_{n-2}) \in C$. Thus

$$\rho_{\Theta, 1-u^{-1}}((r_0, \beta r_1, \ldots, \beta^{n-1}r_{n-1}))$$

$$= ((1 - u^{-1})\beta^{n-1}\Theta(r_{n-1}), \Theta(r_0), \beta\Theta(r_1), \ldots, \beta^{n-2}\Theta(r_{n-2}))$$

$$= (\beta^{-n}\beta^{n-1}\Theta(r_{n-1}), \Theta(r_0), \beta\Theta(r_1), \ldots, \beta^{n-2}\Theta(r_{n-2}))$$

$$= ((1 - \beta^{-1}\Theta(r_{n-1})), (\beta^{-1}\Theta(r_0)), \beta^2(\beta^{-1}\Theta(r_1)), \ldots, \beta^{n-1}(\beta^{-1}\Theta(r_{n-2})))$$

$$= \mu((1 - \beta^{-1}\Theta(r_{n-1}), \beta^{-1}\Theta(r_0), \beta^{-1}\Theta(r_1), \ldots, \beta^{-1}\Theta(r_{n-2})))$$

$$= \mu(\beta^{-1}(\Theta(r_{n-1}), \Theta(r_0), \Theta(r_1), \ldots, \Theta(r_{n-2}))) \in \mu(C)$$

since $\beta^{-1}(\Theta(r_{n-1}), \Theta(r_0), \Theta(r_1), \ldots, \Theta(r_{n-2})) \in C$. Hence, $\mu(C)$ is $\Theta-(1-u^{-1})$-constacyclic as desired.

For the other direction, assume that $\mu(C)$ is a $\Theta-(1-u^{-1})$-constacyclic code. Let $(r_0, r_1, \ldots, r_{n-1}) \in C$. Then $(r_0, \beta r_1, \ldots, \beta^{n-1}r_{n-1}) \in \mu(C)$. By linearity and $\Theta-(1-u^{-1})$-constacyclicity of $\mu(C)$, we have

$$\beta((1 - u^{-1})\beta^{n-1}\Theta(r_{n-1}), \Theta(r_0), \beta\Theta(r_1), \ldots, \beta^{n-2}\Theta(r_{n-2})) \in \mu(C).$$

Since μ is bijective, we have

$$\rho_{\Theta}((r_0, r_1, \ldots, r_{n-1})) = (\Theta(r_{n-1}), \Theta(r_0), \Theta(r_1), \ldots, \Theta(r_{n-2}))$$

$$= \mu^{-1}((\Theta(r_{n-1}), \beta\Theta(r_0), \beta^2\Theta(r_1), \ldots, \beta^{n-1}\Theta(r_{n-2})))$$

$$= \mu^{-1}((\beta^{-n}\beta^{n}\Theta(r_{n-1}), \beta\Theta(r_0), \beta^2\Theta(r_1), \ldots, \beta^{n-1}\Theta(r_{n-2})))$$

$$= \mu^{-1}(\beta((1 - u^{-1})\beta^{n-1}\Theta(r_{n-1}), \Theta(r_0), \beta\Theta(r_1), \ldots, \beta^{n-2}\Theta(r_{n-2}))) \in C$$
since \(\beta((1 - u^{e-1})\Theta(r_{n-1}), \Theta(r_0), \beta\Theta(r_1), \ldots, \beta^{n-2}\Theta(r_{n-2})) \in \mu(C) \). Therefore, \(C \) is \(\Theta \)-cyclic.

Proposition 4.2. Let \(C \) be a non-empty subset of \(\mathcal{R}_{(p^n, e)^n} \). Then \(C \) is a \(\Theta \)-\((1 + u^{e-1}) \)-constacyclic code if and only if \(\mu^2(C) \) is a \(\Theta \)-\((1 - u^{e-1}) \)-constacyclic code.

Proof. Using the definition of \(\nu^2 \), \(\Theta \)-\((1 + u^{e-1}) \)-constacyclicity and \(\Theta \)-\((1 - u^{e-1}) \)-constacyclicity, the proof can be obtained similar to those in Proposition 4.1.

The Nechaev permutation in [12] is extended in [16] to be the permutation \(\tau \) on \(\{0, 1, \ldots, pn - 1\} \) defined by

\[
\tau(sn + j) = (s + jn')pn + j,
\]
where \(0 \leq s \leq p - 1 \), \(0 \leq j \leq n - 1 \), and \((s + jn')_p \) is the least residue of \(s + jn' \) modulo \(p \). The permutation \(\tau \) induces \(\pi : \mathbb{F}_{p^n}^m \to \mathbb{F}_{p^n}^m \) as follows:

\[
\pi((c_0, c_1, \ldots, c_{pn-1})) = (c_{\tau(0)}, c_{\tau(1)}, \ldots, c_{\tau(pn-1)}).
\]

The map \(\pi \) is then extended to \(\pi^{\otimes p^{m(e-1)-1}} : \mathbb{F}_{p^n}^{p^{m(e-1)-1}} \to \mathbb{F}_{p^n}^{p^{m(e-1)-1}} \) by

\[
(a(p^0) | a(p^1) | \cdots | a(p^{m(e-1)-1})) \mapsto (\pi(a(p^0)) | \pi(a(p^1)) | \cdots | \pi(a(p^{m(e-1)-1}))),
\]

where \(a(i) \in \mathbb{F}_{p^n}^m \), \(\pi \) is a vector concatenation.

Proposition 4.3 ([16]). \(\Phi \circ \mu = \pi^{\otimes p^{m(e-1)-1}} \circ \Phi \).

Next corollary follows immediately from Propositions 4.1, 4.3 and Theorem 3.1.

Corollary 4.4. The Gray image of a \(\Theta \)-cyclic code of length \(n \) over \(\mathcal{R}_{(p^n, e)} \) is permutatively equivalent to a \(\theta \)-permutation invariant code of length \(p^{m(e-1)}n \) over \(\mathbb{F}_{p^n}^m \).

Finally, we establish the structure of the Gray image of a \(\Theta \)-\((1 + u^{e-1}) \)-constacyclic code.

Proposition 4.5 ([16]). \(\Phi \circ \mu^2 = \pi^{\otimes p^{m(e-1)-1}} \circ \pi^{\otimes p^{m(e-1)-1}} \circ \Phi \).

Next corollary follows immediately from Propositions 4.1, 4.5 and Theorem 3.1.

Corollary 4.6. The Gray image of a \(\Theta \)-\((1 + u^{e-1}) \)-constacyclic code of length \(n \) over \(\mathcal{R}_{(p^n, e)} \) is permutatively equivalent to a \(\theta \)-permutation invariant code of length \(p^{m(e-1)}n \) over \(\mathbb{F}_{p^n}^m \).
5 Conclusion and Remarks

For a given automorphism $\Theta := \Theta_{d,1,1}$ of a ring $\mathcal{R}(p^m,e)$, the Gray images of Θ-$(1-u^{e-1})$-constacyclic codes are determined. In addition, if the length of codes is not divisible by p, the Gray images of Θ-cyclic and Θ-$(1+u^{e-1})$-constacyclic codes are also studied. Moreover, we have the following commuting diagram.

For an arbitrary n, it follows from Theorem 3.1 that the third loop in the diagram commutes. As a consequence of Theorem 3.1, Propositions 4.3 and 4.5, all loops in the diagram commute whenever $\gcd(n,p) = 1$.

If Θ is the identity automorphism, then the maps T_ν and T_θ are identity permutations. Hence, the diagram can be viewed as in the following.

For an arbitrary n, the third loop in the diagram commutes. All the diagrams commute whenever $\gcd(n,p) = 1$.

Using the latter diagram, the following results can be obtained as corollaries of Theorem 3.2, Corollaries 4.4 and 4.6, respectively.

Corollary 5.1 ([16]). Let C be a code of length n over $\mathcal{R}(p^m,e)$. Then C is a $(1-u^{e-1})$-constacyclic if and only if $\Phi(C)$ is a quasi-cyclic code of index $p^m(e-1)^{-1}$ and length $p^m(e-1)n$ over \mathbb{F}_{p^m}.

Corollary 5.2 ([16]). The Gray image of a linear cyclic code of length n over $\mathcal{R}(p^m,e)$ is permutatively equivalent to a quasi-cyclic code of index $p^m(e-1)^{-1}$ and length $p^m(e-1)n$ over \mathbb{F}_{p^m}.

Corollary 5.3. The Gray image of a linear $(1+u^{e-1})$-constacyclic code of length n over $\mathcal{R}(p^m,e)$ is permutatively equivalent to a quasi-cyclic code of index $p^m(e-1)^{-1}$ and length $p^m(e-1)n$ over \mathbb{F}_{p^m}.
Due to the automorphisms of finite chain rings established in [1], it would be interesting to study possible generalizations to the Gray images of skew constacyclic codes over finite chain rings in general.

Acknowledgements:
Parts of this work were done when S. Jitman was a research fellow at the Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. He would like to thank Nanyang Technological University for the support and hospitality.

The authors thank the anonymous referees for helpful comments.

References

Somphong Jitman
Department of Mathematics, Faculty of Science, Silpakorn University,
Nakhon Pathom 73000, Thailand
Email: sjitman@gmail.com

Ekkasit Sangwisut
Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand
Email: e.sangwisut@gmail.com
Patanee Udomkavanich
Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand
Email: pattanee.u@chula.ac.th